Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.165
Filtrar
1.
PeerJ ; 12: e17378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726378

RESUMEN

Many citrus species and cultivars are grown successfully in tropical and subtropical countries, as well as in arid and semi-arid regions with low levels of organic matter and low cation exchange, resulting in lower nutrient uptake by the plant. The essential nutrients needed for citrus flowering and fruit set are limited in winter due to a reduction in transpiration rate, negatively effecting vegetative growth, flowering, yield, and fruit quality. The present investigation was carried out to assess the nutritional status, fruit yield parameters, and fruit quality of Valencia orange trees after foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations in the 2020/2021 and 2021/2022 seasons. The treatments were arranged in a split-plot design (three levels spraying seaweed extract × four levels spraying calcium chloride and boric acid and their combinations × four replicates × one tree/replicate). The results indicated that all of the characteristics measured, including leaf chlorophyll, leaf mineral contents, fruit yield parameters, fruit physical properties, and fruit chemical properties, were significantly affected by the foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations. Although all treatments increased the productivity and the physical and chemical properties of Valencia orange fruits compared to the control, a treatment of 10 g/L SW combined with 0.5 g/L boric acid and 1 g/L calcium chloride produced superior results. This ratio of SW, boric acid, and calcium chloride is therefore recommended to enhance productivity and improve the physico-chemical properties of Valencia orange for greater fruit yield.


Asunto(s)
Ácidos Bóricos , Cloruro de Calcio , Citrus sinensis , Frutas , Algas Marinas , Ácidos Bóricos/farmacología , Citrus sinensis/química , Frutas/química , Frutas/efectos de los fármacos , Algas Marinas/química , Algas Marinas/metabolismo , Cloruro de Calcio/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Clorofila/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731982

RESUMEN

Plant extracts can be a valuable source of biologically active compounds in many cosmetic preparations. Their effect depends on the phytochemicals they contain and their ability to penetrate the skin. Therefore, in this study, the possibility of skin penetration by phenolic acids contained in dogwood extracts of different fruit colors (yellow, red, and dark ruby red) prepared using different extractants was investigated. These analyses were performed using a Franz chamber and HPLC-UV chromatography. Moreover, the antioxidant properties of the tested extracts were compared and their impact on the intracellular level of free radicals in skin cells was assessed. The cytotoxicity of these extracts towards keratinocytes and fibroblasts was also analyzed and their anti-inflammatory properties were assessed using the enzyme-linked immunosorbent assay (ELISA). The analyses showed differences in the penetration of individual phenolic acids into the skin and different biological activities of the tested extracts. None of the extracts had cytotoxic effects on skin cells in vitro, and the strongest antioxidant and anti-inflammatory properties were found in dogwood extracts with dark ruby red fruits.


Asunto(s)
Antiinflamatorios , Antioxidantes , Cornus , Extractos Vegetales , Piel , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cornus/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antioxidantes/farmacología , Antioxidantes/química , Piel/metabolismo , Piel/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Hidroxibenzoatos/farmacología , Hidroxibenzoatos/química , Frutas/química , Animales , Cromatografía Líquida de Alta Presión
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732066

RESUMEN

We studied five common perishable fruits in terms of their polyphenols dynamic, minerals distribution, scavenger activity and the effects of 50% ethanolic extracts on the viability of Caco-2 cells in vitro, over a period of time between T = 0 and T = 5/7 days, typically the end of their shelf life. Altogether, there were few changes found, consisting of either an increase or a decrease in their chemical and biological attributes. A slow decrease was found in the antioxidant activity in apricot (-11%), plum (-6%) and strawberry (-4%) extracts, while cherry and green seedless table grape extracts gained 7% and 2% antioxidant potency, respectively; IC50 values ranged from 1.67 to 5.93 µg GAE/µL test extract. The cytotoxicity MTS assay at 24 h revealed the ability of all 50% ethanol fruit extracts to inhibit the Caco-2 cell viability; the inhibitory effects ranged from 49% to 83% and were measured at 28 µg GAE for strawberry extracts/EES, from 22 µg to 45 µg GAE for cherry extracts/EEC, from 7.58 to 15.16 µg GAE for apricot extracts/EEA, from 12.50 to 25.70 µg GAE for plum extracts/EEP and from 21.51 to 28.68 µg GAE for green table grape extracts/EEG. The MTS anti-proliferative assay (72 h) also revealed a stimulatory potency upon the Caco-2 viability, from 34% (EEA, EEG) and 48% (EEC) to 350% (EES) and 690% (EEP); therefore fruit juices can influence intestinal tumorigenesis in humans.


Asunto(s)
Antioxidantes , Supervivencia Celular , Frutas , Extractos Vegetales , Humanos , Células CACO-2 , Frutas/química , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos , Fragaria/química , Polifenoles/farmacología , Vitis/química
4.
Food Res Int ; 186: 114340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729695

RESUMEN

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Asunto(s)
Etilenos , Embalaje de Alimentos , Frutas , Poliuretanos , Aceite de Soja , Zeína , Etilenos/química , Poliuretanos/química , Embalaje de Alimentos/métodos , Porosidad , Frutas/química , Aceite de Soja/química , Zeína/química , Adsorción , Polímeros/química , Solanum lycopersicum/química , Interacciones Hidrofóbicas e Hidrofílicas
5.
Food Res Int ; 186: 114403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729705

RESUMEN

This study aimed to evaluate the functional, technological, and sensory aspects of mangaba (Hancornia speciosa Gomes) fruit pulp fermented with the probiotic Lacticaseibacillus casei 01 (LC1) during refrigerated storage (7 °C, 28 days). The effects of the fermented mangaba pulp on the modulation of the intestinal microbiota of healthy vegan adults were also assessed. Mangaba pulp allowed high viability of LC1 during storage and after simulated gastrointestinal conditions (≥7 log CFU/g). The fermented mangaba pulp showed lower pH and total soluble solids, and higher titratable acidity, and concentrations of lactic, acetic, citric, and propionic acids during storage compared to non-fermented pulp. Also, it presented a higher concentration of bioaccessible phenolics and volatiles, and improved sensory properties (yellow color, brightness, fresh appearance, and typical aroma and flavor). Fermented mangaba pulp added to in vitro cultured colonic microbiota of vegan adults decreased the pH values and concentrations of maltose, glucose, and citric acid while increasing rhamnose and phenolic contents. Fermented mangaba pulp promoted increases in the abundance of Dorea, Romboutsia, Faecalibacterium, Lachnospira, and Lachnospiraceae ND3007 genera and positively impacted the microbial diversity. Findings indicate that mangaba pulp fermented with LC1 has improved chemical composition and functionality, inducing changes in the colonic microbiota of vegan adults associated with potential benefits for human health.


Asunto(s)
Fermentación , Microbioma Gastrointestinal , Lacticaseibacillus casei , Humanos , Microbioma Gastrointestinal/fisiología , Lacticaseibacillus casei/metabolismo , Adulto , Gusto , Probióticos , Masculino , Concentración de Iones de Hidrógeno , Frutas/microbiología , Frutas/química , Colon/microbiología , Colon/metabolismo , Adulto Joven , Femenino
6.
BMC Plant Biol ; 24(1): 368, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711001

RESUMEN

Chilli peppers are widely consumed for their pungency, as used in flavoring the food and has many pharmaceutical and medicinal properties. Based on these properties an experiment was held using 83 varieties of chilli (Hot pepper and sweet pepper) were grown in suitable environment using Augment Block design and evaluated for fruit pungency and phytochemical contents using high proficiency liquid chromatography. Analysis of variance (ANOVA) of traits showed highly significant for all traits except for fruit length and capsaicin contents. The value of Least significant increase (LSI)was ranged 0.27-1289.9 for all traits showed high variation among varieties. Highly significant correlation was found among fruit diameter to fruit weight 0.98, while moderate to high correlation was present among all traits. The most pungent genotype 24,634 was 4.8 g in weight, while the least pungent genotypes i.e. PPE-311 (32.8 g), green wonder (40.67) had higher in weight. The genotypes 24,627, 32,344, 32,368 and 1108 marked as higher number of seeds in their placental region. It was observed that chilli genotype 24,621 had maximum length with considerable high amount of pungency act as novel cultivar. Principal component analysis (PCA) showed the high variability of 46.97 for two PCs with the eigen value 2.6 and 1.63 was recorded. Biplot analysis showed a considerable variability for fruit pungency, while huge variability was found for all traits among given varieties. PPE-311, T5 and T3 are found as highly divergent for all traits. The findings of this study are instrumental for selecting parents to improve desirable traits in future chilli pepper breeding programs. It will help plant/vegetable breeders for development of highly nutrient and pungent varieties and attractive for the consumer of food sector.


Asunto(s)
Capsicum , Frutas , Variación Genética , Fitoquímicos , Frutas/genética , Frutas/química , Cromatografía Líquida de Alta Presión , Capsicum/genética , Capsicum/química , Genotipo , Semillas/genética , Semillas/química
7.
Braz J Biol ; 84: e276161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747857

RESUMEN

The objective was to evaluate the behavior of melon genotypes (Cucumis melo L.) in the physical, chemical and biochemical quality of melon fruits as a function of electrical conductivity irrigation water levels (ECw). The experimental design adopted was randomized blocks in a 5 x 3 factorial scheme with five replications. The first factor was represented by five salinity levels (0.5, 1.5, 3.0, 4.5, and 6.0 dS m-1) and the second factor by accessions A35, and A24, and the hybrid Sancho. The physical, chemical and biochemical variables showed a reduction in production, with smaller fruits, with less weight, smaller cavity, with increased pulp thickness for Sancho. Vitamin C and yellow flavonoids increased indicating antioxidant power against ROS. The genotypes showed similar post-harvest behavior, however, the hybrid Sancho stood out over the others, possibly because it is an improved material. Accession A24 presented physiological and biochemical responses that classify it as intolerant.


Asunto(s)
Frutas , Salinidad , Frutas/química , Genotipo , Cucumis melo/fisiología , Cucumis melo/clasificación , Riego Agrícola , Cucurbitaceae/clasificación , Cucurbitaceae/fisiología , Cucurbitaceae/genética , Antioxidantes/análisis
8.
Compr Rev Food Sci Food Saf ; 23(3): e13359, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720571

RESUMEN

The recent increase in the harvesting and industrial processing of tropical fruits such as pineapple and papaya is leading to unavoidable amounts of byproducts rich in valuable compounds. Given the significance of the chemical composition of these byproducts, new research avenues are opening up to exploit them in the food industry. In this sense, the revalorization of pineapple and papaya byproducts is an emerging trend that is encouraging the full harnessing of these tropical fruits, offering the opportunity for developing innovative value-added products. Therefore, the main aim of this review is to provide an overview of the state of the art of the current valorization applications of pineapple and papaya byproducts in the field of food industry. For that proposal, comprehensive research of valorization applications developed in the last years has been conducted using scientific databases, databases, digital libraries, and scientific search engines. The latest valorization applications of pineapple and papaya byproducts in the food industry have been systematically revised and gathered with the objective of synthesizing and critically analyzing existing scientific literature in order to contribute to the advancement of knowledge in the field of tropical byproduct revalorization providing a solid foundation for further research and highlighting scientific gaps and new challenges that should be addressed in the future.


Asunto(s)
Ananas , Carica , Frutas , Carica/química , Ananas/química , Frutas/química , Industria de Alimentos , Manipulación de Alimentos/métodos
9.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710545

RESUMEN

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Asunto(s)
Celulosa , Embalaje de Alimentos , Lignina , Lignina/análogos & derivados , Nanocompuestos , Nanofibras , Resistencia a la Tracción , Madera , Xilanos , Embalaje de Alimentos/métodos , Lignina/química , Nanocompuestos/química , Celulosa/química , Celulosa/análogos & derivados , Madera/química , Nanofibras/química , Xilanos/química , Antioxidantes/química , Frutas/química
10.
Anim Sci J ; 95(1): e13950, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38712489

RESUMEN

The utilization of polyphenol-modified starch in ruminants has not undergone extensive exploration. This study aimed to investigate the impact of the complex formed between starch and Melastoma candidum D. Don fruit extract on physicochemical properties, phenol release kinetics in various buffers simulating the gastrointestinal tract, methane production, and post-rumen digestibility. The interaction between starch and M. candidum D. Don fruit extract significantly (p < 0.001) increased resistant starch and particle size diameter. The maximum phenolic release from complex between starch and M. candidum D. Don fruit extract, due to gastrointestinal tract-simulated buffers, ranged from 22.96 to 34.60 mg/100 mg tannic acid equivalent. However, rumen and abomasum-simulated buffers released more phenolic content, whereas the intestine-simulated buffer showed higher antioxidant activity (ferric ion-reducing antioxidant power). Furthermore, complex between starch and M. candidum D. Don fruit extract significantly decreased dry matter rumen digestibility (p < 0.001) and maximum methane gas production (p < 0.001).


Asunto(s)
Antioxidantes , Fenómenos Químicos , Digestión , Fermentación , Melastomataceae , Extractos Vegetales , Rumen , Almidón , Rumen/metabolismo , Animales , Almidón/metabolismo , Antioxidantes/metabolismo , Melastomataceae/química , Melastomataceae/metabolismo , Reología , Metano/metabolismo , Frutas/química , Técnicas In Vitro , Fenoles/metabolismo , Fenoles/análisis , Tamaño de la Partícula , Polifenoles/metabolismo
11.
PLoS One ; 19(5): e0302906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718039

RESUMEN

Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1ß-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.


Asunto(s)
Cartílago Articular , Condrocitos , Interleucina-1beta , FN-kappa B , Osteoartritis , Extractos Vegetales , Animales , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Interleucina-1beta/metabolismo , Ratas , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , FN-kappa B/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Extractos Vegetales/farmacología , Prunus/química , Ratas Sprague-Dawley , Regulación hacia Abajo/efectos de los fármacos , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Colágeno Tipo II/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Frutas/química , Agrecanos/metabolismo , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Células Cultivadas , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
12.
Sci Rep ; 14(1): 10307, 2024 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705878

RESUMEN

This research aims to investigate the potential of utilizing pomegranate peel powder (PPP) as a natural preservative in muffin preparation. Pomegranate peel is a rich source of bioactive compounds, including phenolics, flavonoids, and tannins, which possess high antioxidant and antimicrobial properties. The In-Vitro antifungal activity of pomegranate peel powder (8% PPP), potassium sorbate (0.1% PS) and calcium propionate (0.5% CP) was assessed against Penicillium sp. and Aspergillus sp. using poison food technique. The PPP showed the anti-fungal activity by delaying the growth of microorganism on media plate similar to the PS and CP. The effect of utilization of PPP on quality characteristics of muffins were compared with the muffins with chemical preservatives (0.1% PS and 0.5% CP). The viscosity and specific gravity of batter significantly increased from 7.98 to 11.87 Pa s and 1.089-1.398 respectively on addition of 8% PPP. The optical microscopic structure of PPP added batter revealed the decrease in the number of air cells from 24 to 12 with radius range of 6.42-72.72 µm and area range of 511.03-15,383.17 µm2. The functional properties of flour with PPP had higher water absorption capacity, foaming stability, emulsification activity and emulsion stability than others. The addition of PPP significantly increase the weight (32.83 g), and decrease the height (31.3 mm), volume (61.43 cm3), specific volume (1.67 cm3/g) and baking loss (10.19%). The 418.36% increase in fibre content, 14.46% and 18.46% decrease in carbohydrates and energy value was observed in muffin with 8% PPP as compared to control respectively. The total phenols was increased from 0.92 to 12.5 mg GAE/100 g, total tannin from 0.2 to 8.27 mg GAE/100 g, In-vitro antioxidant activity by DPPH from 6.97 to 29.34% and In-vitro antioxidant activity by FRAP from 0.497 to 2.934 mg AAE/100 g in muffins added with 8% PPP. The muffin with PPP was softer than control and muffin with 0.1% PS. The addition of PPP resulted to improve in muffin texture but taste slightly bitter. During the storage of muffins at room temperature (27-30 °C), the moisture content of muffin with PPP was reduced from 17.04 to 13.23% which was higher than the rest of the treatments. Similarly, the hardness of sample with PPP was higher than the sample with 0.5% CP, but lowers than control and sample with 0.1% PS throughout the storage period. The results suggest that pomegranate peel powder can be successfully used as a natural preservative in place of chemical preservatives in muffins, to extend the shelf life. This study provides the opportunity to use PPP as functional ingredient and natural preservative in different bakery products.


Asunto(s)
Conservación de Alimentos , Conservantes de Alimentos , Granada (Fruta) , Polvos , Conservantes de Alimentos/farmacología , Conservantes de Alimentos/química , Granada (Fruta)/química , Conservación de Alimentos/métodos , Penicillium/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Antifúngicos/farmacología , Antifúngicos/química , Aspergillus/efectos de los fármacos , Aspergillus/crecimiento & desarrollo , Frutas/química , Almacenamiento de Alimentos/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química
13.
Trop Anim Health Prod ; 56(4): 153, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717731

RESUMEN

Ensilage of refused fruit with forage is a viable approach to increase resource use in ruminant feed. The objective of this study was to investigate the impact of ensiling refused melon fruit (RMF) with Canarana grass on the intake, apparent digestibility, serum biochemistry, performance, carcass traits, and meat attributes of feedlot lambs. Four distinct silage treatment types were prepared by ensiling RMF at 0 g/kg (control), 70 g/kg, 140 g/kg, and 210 g/kg (as fed) with Canarana grass. Twenty-eight male Santa Inês lambs (7 lambs per treatment), initially weighing 22.3 ± 1.0 kg at 120 days of age, were distributed in a completely randomized design and confined for a total of 96 days, including a 23-day adaptation period and 73 experimental days in a feedlot. The lambs received the treatment-silage in diets as a complete mixture with a roughage: concentrate ratio of 30:70. The inclusion of RMF in Canarana grass ensilage decreased (P < 0.05) the lambs' intake of dry matter, crude protein and metabolisable energy. The inclusion of RMF in ensilage had a quadratic effect (P < 0.05) on the digestibility of non-fibrous carbohydrates. The serum total protein and cholesterol levels decreased (P < 0.05) with the inclusion of RMF in the ensilage, but we observed no effect on the final weight and average daily gain of the lambs. The feed efficiency increased (P < 0.05) by including RMF in the Canarana grass ensilage. The RMF in the ensilage did not influence cold carcass weight and yield. The fat content of the meat decreased (P < 0.05) with the inclusion of RMF in the ensilage. It is recommended the inclusion of up to 210 g/kg of RMF in Canarana grass ensilage to increase feed efficiency and avoid impacts on the performance and carcass attributes of confined lambs.


Asunto(s)
Dieta , Digestión , Oveja Doméstica , Ensilaje , Animales , Digestión/efectos de los fármacos , Masculino , Ensilaje/análisis , Dieta/veterinaria , Oveja Doméstica/fisiología , Oveja Doméstica/crecimiento & desarrollo , Oveja Doméstica/sangre , Fenómenos Fisiológicos Nutricionales de los Animales , Alimentación Animal/análisis , Cucurbitaceae/química , Frutas/química , Distribución Aleatoria
14.
Rapid Commun Mass Spectrom ; 38(13): e9762, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38693787

RESUMEN

RATIONALE: Perillae Fructus (PF) is a common traditional Chinese medicine (TCM) for the treatment of asthma. It has not been effectively characterized by rosmarinic acid (RosA), which is currently designed as the sole quality indicator in the Chinese Pharmacopoeia. METHODS: This study introduced a database-aided ultrahigh-performance liquid chromatography equipped with quadrupole-Exactive-Orbitrap mass spectrometry (UHPLC/Q-Exactive-Orbitrap MS/MS) technology to putatively identify the compounds in PF, followed by literature research, quantum chemical calculation, and molecular docking to screen potential quality markers (Q-markers) of PF. RESULTS: A total of 27 compounds were putatively identified, 16 of which had not been previously found from PF. In particular, matrine, scopolamine, and RosA showed relatively high levels of content, stability, and drug-likeness. They exhibited interactions with the asthma-related target and demonstrated the TCM properties of PF. CONCLUSIONS: The database-aided UHPLC/Q-Exactive-Orbitrap MS/MS can identify at least 27 compounds in PF. Of these, 16 compounds are unexpected, and three compounds (matrine, scopolamine, and RosA) should be considered anticounterfeiting pharmacopoeia Q-markers of PF.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Simulación del Acoplamiento Molecular , Farmacopeas como Asunto , Frutas/química , Escopolamina/análisis , Depsidos/análisis , Depsidos/química
15.
Nutrients ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732527

RESUMEN

Ulcerative colitis (UC) is characterized by chronic inflammation and ulceration of the intestinal inner lining, resulting in various symptoms. Sea buckthorn berries contain a bioactive compound known as sea buckthorn polysaccharide (SBP). However, the precise mechanisms underlying the impact of SBP on UC remain unclear. In this study, we investigated the effects of pretreatment with SBP on colitis induced by DSS. Our findings demonstrate that SBP pretreatment effectively reduces inflammation, oxidative stress, and intestinal barrier damage associated with colitis. To further elucidate the role of SBP-modulated gut microbiota in UC, we performed fecal microbiota transplantation (FMT) on DSS-treated mice. The microbiota from SBP-treated mice exhibits notable anti-inflammatory and antioxidant effects, improves colonic barrier integrity, and increases the abundance of beneficial bacteria, as well as enhancing SCFA production. Collectively, these results strongly indicate that SBP-mediated amelioration of colitis is attributed to its impact on the gut microbiota, particularly through the promotion of SCFA-producing bacteria and subsequent elevation of SCFA levels. This study provides compelling evidence supporting the efficacy of pre-emptive SBP supplementation in alleviating colitis symptoms by modulating the gut microbiota, thereby offering novel insights into the potential of SBP as a regulator of the gut microbiota for colitis relief.


Asunto(s)
Microbioma Gastrointestinal , Hippophae , Polisacáridos , Animales , Hippophae/química , Polisacáridos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/microbiología , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/tratamiento farmacológico , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Trasplante de Microbiota Fecal , Colon/efectos de los fármacos , Colon/microbiología , Colon/metabolismo , Sulfato de Dextran , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Frutas/química , Ácidos Grasos Volátiles/metabolismo
16.
Nutrients ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732606

RESUMEN

Currently, a clear interest has been given to berries due to their richness in active metabolites, including anthocyanins and non-coloured phenolics. Therefore, the main aim of the present work is to investigate the phenolic profile, antioxidant abilities, and antiproliferative effects on normal human dermal fibroblasts (NHDF) and human colon carcinoma cell line (Caco-2) cells of phenolic-rich extracts from three red fruits highly appreciated by consumers: two species of blackberries (Rubus fruticosus and Rubus ulmifolius) and one species of mulberry (Morus nigra). A total of 19 different phenolics were identified and quantified by HPLC-DAD-ESI/MSn and HPLC-DAD, respectively. Focusing on the biological potential of the phenolic-rich extracts, all of them revealed notable scavenging abilities. Concerning the antiproliferative properties, R. fruticosus presented a cytotoxic selectivity for Caco-2 cells compared to NHDF cells. To deeper explore the biological potential, combinations with positive controls (ascorbic acid and 5-fluorouracil) were also conducted. Finally, the obtained data are another piece of evidence that the combination of phenolic-rich extracts from natural plants with positive controls may reduce clinical therapy costs and the possible toxicity of chemical drugs.


Asunto(s)
Antioxidantes , Proliferación Celular , Frutas , Morus , Estrés Oxidativo , Fenoles , Extractos Vegetales , Rubus , Humanos , Células CACO-2 , Extractos Vegetales/farmacología , Rubus/química , Morus/química , Fenoles/farmacología , Fenoles/análisis , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Proliferación Celular/efectos de los fármacos , Frutas/química , Antineoplásicos Fitogénicos/farmacología , Cromatografía Líquida de Alta Presión
17.
Sensors (Basel) ; 24(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38733058

RESUMEN

Based on the current research on the wine grape variety recognition task, it has been found that traditional deep learning models relying only on a single feature (e.g., fruit or leaf) for classification can face great challenges, especially when there is a high degree of similarity between varieties. In order to effectively distinguish these similar varieties, this study proposes a multisource information fusion method, which is centered on the SynthDiscrim algorithm, aiming to achieve a more comprehensive and accurate wine grape variety recognition. First, this study optimizes and improves the YOLOV7 model and proposes a novel target detection and recognition model called WineYOLO-RAFusion, which significantly improves the fruit localization precision and recognition compared with YOLOV5, YOLOX, and YOLOV7, which are traditional deep learning models. Secondly, building upon the WineYOLO-RAFusion model, this study incorporated the method of multisource information fusion into the model, ultimately forming the MultiFuseYOLO model. Experiments demonstrated that MultiFuseYOLO significantly outperformed other commonly used models in terms of precision, recall, and F1 score, reaching 0.854, 0.815, and 0.833, respectively. Moreover, the method improved the precision of the hard to distinguish Chardonnay and Sauvignon Blanc varieties, which increased the precision from 0.512 to 0.813 for Chardonnay and from 0.533 to 0.775 for Sauvignon Blanc. In conclusion, the MultiFuseYOLO model offers a reliable and comprehensive solution to the task of wine grape variety identification, especially in terms of distinguishing visually similar varieties and realizing high-precision identifications.


Asunto(s)
Algoritmos , Vitis , Vino , Vitis/clasificación , Vino/análisis , Vino/clasificación , Aprendizaje Profundo , Frutas/química
18.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731502

RESUMEN

Vacuum saccharification significantly affected the flavor and color of preserved French plums. However, the correlation between color, flavor, and metabolites remains unclear. Metabolites contribute significantly to enhancing the taste and overall quality of preserved French plums. This study aimed to investigate the distinctive metabolites in samples from various stages of the processing of preserved French plums. The PCF4 exhibited the highest appearance, overall taste, and chroma. Furthermore, utilizing UPLC and ESI-Q TRAP-MS/MS, a comprehensive examination of the metabolome in the processing of preserved French plums was conducted. A total of 1776 metabolites were analyzed. Using WGCNA, we explored metabolites associated with sensory features through 10 modules. Based on this, building the correlation of modules and objective quantification metrics yielded three key modules. After screening for 151 differentiated metabolites, amino acids, and their derivatives, phenolic acids, flavonoids, organic acids, and other groups were identified as key differentiators. The response of differential metabolites to stress influenced the taste and color properties of preserved prunes. Based on these analyses, six important metabolic pathways were identified. This study identified changes in the sensory properties of sugar-stained preserved prunes and their association with metabolite composition, providing a scientific basis for future work to improve the quality of prune processing.


Asunto(s)
Metabolómica , Metabolómica/métodos , Gusto , Espectrometría de Masas en Tándem/métodos , Metaboloma , Cromatografía Líquida de Alta Presión/métodos , Frutas/química , Frutas/metabolismo
19.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731535

RESUMEN

Pre-fermentation treatment has an important impact on the color, aroma, taste, and other characteristics of fruit wine. To discover suitable pre-treatment techniques and conditions that yield strawberry wine of excellent quality, the influences of juice fermentation, pulp maceration, thermovinification, and enzymatic hydrolysis pre-treatments on the basic chemical composition, color, antioxidant capacity, and volatile organic compounds in strawberry wines were investigated. The results showed that the color, antioxidant properties, and volatile aroma of strawberry wines fermented with juice were different from those with pulp. Strawberry wines fermented from juice after 50 °C maceration had more desirable qualities, such as less methanol content (72.43 ± 2.14 mg/L) compared with pulp-fermented wines (88.16 ± 7.52 mg/L) and enzymatic maceration wines (136.72 ± 11.5 mg/L); higher total phenolic content (21.78%) and total flavonoid content (13.02%); enhanced DPPH (17.36%) and ABTS (27.55%) free radical scavenging activities; richer essential terpenoids and fatty acid ethyl esters, such as linalool (11.28%), ethyl hexanoate (14.41%), ethyl octanoate (17.12%), ethyl decanoate (32.49%), and ethyl 9-decenoate (60.64%); pleasant floral and fruity notes compared with juice-fermented wines macerated at normal temperatures; and a lighter color. Overall, juice thermovinification at 50 °C is a potential pre-treatment technique to enhance the nutrition and aroma of strawberry wine.


Asunto(s)
Antioxidantes , Fermentación , Fragaria , Compuestos Orgánicos Volátiles , Vino , Vino/análisis , Compuestos Orgánicos Volátiles/análisis , Fragaria/química , Antioxidantes/análisis , Antioxidantes/química , Odorantes/análisis , Fenoles/análisis , Flavonoides/análisis , Frutas/química , Color
20.
Nutrients ; 16(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38674794

RESUMEN

Metabolic syndrome (MetS) is a significant health problem. The co-occurrence of obesity, carbohydrate metabolism disorders, hypertension and atherogenic dyslipidaemia is estimated to affect 20-30% of adults worldwide. Researchers are seeking solutions to prevent and treat the conditions related to MetS. Preventive medicine, which focuses on modifiable cardiovascular risk factors, including diet, plays a special role. A diet rich in fruits and vegetables has documented health benefits, mainly due to the polyphenolic compounds it contains. Anthocyanins represent a major group of polyphenols; they exhibit anti-atherosclerotic, antihypertensive, antithrombotic, anti-inflammatory and anticancer activities, as well as beneficial effects on endothelial function and oxidative stress. This review presents recent reports on the mechanisms involved in the protective effects of anthocyanins on the body, especially among people with MetS. It includes epidemiological data, in vivo and in vitro preclinical studies and clinical observational studies. Anthocyanins are effective, widely available compounds that can be used in both the prevention and treatment of MetS and its complications. Increased consumption of anthocyanin-rich foods may contribute to the maintenance of normal body weight and modulation of the lipid profile in adults. However, further investigation is needed to confirm the beneficial effects of anthocyanins on serum glucose levels, improvement in insulin sensitivity and reduction in systolic and diastolic blood pressure.


Asunto(s)
Antocianinas , Síndrome Metabólico , Antocianinas/farmacología , Antocianinas/uso terapéutico , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/prevención & control , Humanos , Frutas/química , Estrés Oxidativo/efectos de los fármacos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA